Source code for bigframes.bigquery._operations.sql

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""SQL escape hatch features."""

from __future__ import annotations

from typing import Sequence

import google.cloud.bigquery

import bigframes.core.compile.sqlglot.sqlglot_ir as sqlglot_ir
import bigframes.dtypes
import bigframes.operations
import bigframes.series


[docs] def sql_scalar( sql_template: str, columns: Sequence[bigframes.series.Series], ) -> bigframes.series.Series: """Create a Series from a SQL template. **Examples:** >>> import bigframes.pandas as bpd >>> import bigframes.bigquery as bbq >>> s = bpd.Series(["1.5", "2.5", "3.5"]) >>> s = s.astype(pd.ArrowDtype(pa.decimal128(38, 9))) >>> bbq.sql_scalar("ROUND({0}, 0, 'ROUND_HALF_EVEN')", [s]) 0 2.000000000 1 2.000000000 2 4.000000000 dtype: decimal128(38, 9)[pyarrow] Args: sql_template (str): A SQL format string with Python-style {0} placeholders for each of the Series objects in ``columns``. columns (Sequence[bigframes.pandas.Series]): Series objects representing the column inputs to the ``sql_template``. Must contain at least one Series. Returns: bigframes.pandas.Series: A Series with the SQL applied. Raises: ValueError: If ``columns`` is empty. """ if len(columns) == 0: raise ValueError("Must provide at least one column in columns") # To integrate this into our expression trees, we need to get the output # type, so we do some manual compilation and a dry run query to get that. # Another benefit of this is that if there is a syntax error in the SQL # template, then this will fail with an error earlier in the process, # aiding users in debugging. literals_sql = [ sqlglot_ir._literal(None, column.dtype).sql(dialect="bigquery") for column in columns ] select_sql = sql_template.format(*literals_sql) dry_run_sql = f"SELECT {select_sql}" # Use the executor directly, because we want the original column IDs, not # the user-friendly column names that block.to_sql_query() would produce. base_series = columns[0] bqclient = base_series._session.bqclient job = bqclient.query( dry_run_sql, job_config=google.cloud.bigquery.QueryJobConfig(dry_run=True) ) _, output_type = bigframes.dtypes.convert_schema_field(job.schema[0]) op = bigframes.operations.SqlScalarOp( _output_type=output_type, sql_template=sql_template ) return base_series._apply_nary_op(op, columns[1:])