Source code for bigframes.core.indexes.multi

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import cast, Hashable, Iterable, Optional, Sequence, TYPE_CHECKING

import bigframes_vendored.pandas.core.indexes.multi as vendored_pandas_multindex
import pandas

from bigframes.core import blocks
from bigframes.core import expression as ex
from bigframes.core.indexes.base import Index

if TYPE_CHECKING:
    import bigframes.session


[docs] class MultiIndex(Index, vendored_pandas_multindex.MultiIndex): __doc__ = vendored_pandas_multindex.MultiIndex.__doc__
[docs] @classmethod def from_tuples( cls, tuples: Iterable[tuple[Hashable, ...]], sortorder: int | None = None, names: Sequence[Hashable] | Hashable | None = None, *, session: Optional[bigframes.session.Session] = None, ) -> MultiIndex: pd_index = pandas.MultiIndex.from_tuples(tuples, sortorder, names) # Index.__new__ should detect multiple levels and properly create a multiindex return cast(MultiIndex, Index(pd_index, session=session))
[docs] @classmethod def from_arrays( cls, arrays, sortorder: int | None = None, names=None, *, session: Optional[bigframes.session.Session] = None, ) -> MultiIndex: pd_index = pandas.MultiIndex.from_arrays(arrays, sortorder, names) # Index.__new__ should detect multiple levels and properly create a multiindex return cast(MultiIndex, Index(pd_index, session=session))
def __eq__(self, other) -> Index: # type: ignore import bigframes.operations as ops import bigframes.operations.aggregations as agg_ops eq_result = self._apply_binary_op(other, ops.eq_op)._block.expr as_array = ops.ToArrayOp().as_expr( *( ops.fillna_op.as_expr(col, ex.const(False)) for col in eq_result.column_ids ) ) reduced = ops.ArrayReduceOp(agg_ops.all_op).as_expr(as_array) result_expr, result_ids = eq_result.compute_values([reduced]) return Index( blocks.Block( result_expr.select_columns(result_ids), index_columns=result_ids, column_labels=(), index_labels=[None], ) )
class MultiIndexAccessor: """Proxy to MultiIndex constructors to allow a session to be passed in.""" def __init__(self, session: bigframes.session.Session): self._session = session def __call__(self, *args, **kwargs) -> MultiIndex: """Construct a MultiIndex using the associated Session. See :class:`bigframes.pandas.MultiIndex`. """ return MultiIndex(*args, session=self._session, **kwargs) def from_arrays(self, *args, **kwargs) -> MultiIndex: """Construct a MultiIndex using the associated Session. See :func:`bigframes.pandas.MultiIndex.from_arrays`. """ return MultiIndex.from_arrays(*args, session=self._session, **kwargs) def from_frame(self, *args, **kwargs) -> MultiIndex: """Construct a MultiIndex using the associated Session. See :func:`bigframes.pandas.MultiIndex.from_frame`. """ return cast(MultiIndex, MultiIndex.from_frame(*args, **kwargs)) def from_tuples(self, *args, **kwargs) -> MultiIndex: """Construct a MultiIndex using the associated Session. See :func:`bigframes.pandas.MultiIndex.from_tuples`. """ return MultiIndex.from_tuples(*args, session=self._session, **kwargs)