bigframes.ml.decomposition.MatrixFactorization#
- class bigframes.ml.decomposition.MatrixFactorization(*, feedback_type: Literal['explicit', 'implicit'] = 'explicit', num_factors: int, user_col: str, item_col: str, rating_col: str = 'rating', l2_reg: float = 1.0)[source]#
Matrix Factorization (MF).
Examples:
>>> import bigframes.pandas as bpd >>> from bigframes.ml.decomposition import MatrixFactorization >>> X = bpd.DataFrame({ ... "row": [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6], ... "column": [0,1] * 7, ... "value": [1, 1, 2, 1, 3, 1.2, 4, 1, 5, 0.8, 6, 1, 2, 3], ... }) >>> model = MatrixFactorization(feedback_type='explicit', num_factors=6, user_col='row', item_col='column', rating_col='value', l2_reg=2.06) >>> W = model.fit(X)
- Parameters:
feedback_type ('explicit' | 'implicit') – Specifies the feedback type for the model. The feedback type determines the algorithm that is used during training.
num_factors (int or auto, default auto) – Specifies the number of latent factors to use.
user_col (str) – The user column name.
item_col (str) – The item column name.
l2_reg (float, default 1.0) – A floating point value for L2 regularization. The default value is 1.0.
Attributes
The rating column name.
Methods
__init__(*[, feedback_type, rating_col, l2_reg])fit(X[, y])Fit the model according to the given training data.
get_params([deep])Get parameters for this estimator.
predict(X)Generate a predicted rating for every user-item row combination for a matrix factorization model.
register([vertex_ai_model_id])Register the model to Vertex AI.
score([X, y])Calculate evaluation metrics of the model.
to_gbq(model_name[, replace])Save the model to BigQuery.