bigframes.pandas.DataFrame.std#
- DataFrame.std(axis: str | int = 0, *, numeric_only: bool = False) Series[source]#
Return sample standard deviation over columns.
Normalized by N-1 by default.
Examples:
>>> df = bpd.DataFrame({"A": [1, 2, 3, 4, 5], ... "B": [3, 4, 3, 2, 1], ... "C": [2, 2, 3, 2, 2]}) >>> df A B C 0 1 3 2 1 2 4 2 2 3 3 3 3 4 2 2 4 5 1 2 [5 rows x 3 columns]
Calculating the standard deviation of each column:
>>> df.std() A 1.581139 B 1.140175 C 0.447214 dtype: Float64
- Parameters:
numeric_only (bool. default False) – Default False. Include only float, int, boolean columns.
- Returns:
Series with sample standard deviation.
- Return type: