bigframes.pandas.Series.loc#
- property Series.loc: LocSeriesIndexer#
Access a group of rows and columns by label(s) or a boolean array.
Examples:
>>> df = bpd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 [3 rows x 2 columns]
Single label. Note this returns the row as a Series.
>>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: Int64
List of labels. Note using [[]] returns a DataFrame.
>>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 [2 rows x 2 columns]
Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included.
>>> df.loc['cobra', 'shield'] np.int64(2)
Index (same behavior as df.reindex)
>>> df.loc[bpd.Index(["cobra", "viper"], name="foo")] max_speed shield cobra 1 2 viper 4 5 [2 rows x 2 columns]
Conditional that returns a boolean Series with column labels specified
>>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 [1 rows x 1 columns]
Multiple conditional using | that returns a boolean Series
>>> df.loc[(df['max_speed'] > 4) | (df['shield'] < 5)] max_speed shield cobra 1 2 sidewinder 7 8 [2 rows x 2 columns]
Please ensure that each condition is wrapped in parentheses ().
Set value for an entire column
>>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 2 viper 30 5 sidewinder 30 8 [3 rows x 2 columns]
- Returns:
Indexers object.
- Return type:
bigframes.core.indexers.LocSeriesIndexer