bigframes.pandas.DataFrame.area#
- DataFrame.area(x: Hashable | None = None, y: Hashable | None = None, stacked: bool = True, **kwargs)[source]#
Draw a stacked area plot. An area plot displays quantitative data visually.
This function calls pandas.plot to generate a plot with a random sample of items. For consistent results, the random sampling is reproducible. Use the sampling_random_state parameter to modify the sampling seed.
Examples:
Draw an area plot based on basic business metrics:
>>> import bigframes.pandas as bpd >>> df = bpd.DataFrame( ... { ... 'sales': [3, 2, 3, 9, 10, 6], ... 'signups': [5, 5, 6, 12, 14, 13], ... 'visits': [20, 42, 28, 62, 81, 50], ... }, ... index=["01-31", "02-28", "03-31", "04-30", "05-31", "06-30"] ... ) >>> ax = df.plot.area()
Area plots are stacked by default. To produce an unstacked plot, pass
stacked=False:>>> ax = df.plot.area(stacked=False)
Draw an area plot for a single column:
>>> ax = df.plot.area(y='sales')
Draw with a different x:
>>> df = bpd.DataFrame({ ... 'sales': [3, 2, 3], ... 'visits': [20, 42, 28], ... 'day': [1, 2, 3], ... }) >>> ax = df.plot.area(x='day')
- Parameters:
x (label or position, optional) – Coordinates for the X axis. By default uses the index.
y (label or position, optional) – Column to plot. By default uses all columns.
stacked (bool, default True) – Area plots are stacked by default. Set to False to create a unstacked plot.
sampling_n (int, default 100) – Number of random items for plotting.
sampling_random_state (int, default 0) – Seed for random number generator.
**kwargs – Additional keyword arguments are documented in
DataFrame.plot().
- Returns:
Area plot, or array of area plots if subplots is True.
- Return type:
matplotlib.axes.Axes or numpy.ndarray