bigframes.pandas.DataFrame.update#
- DataFrame.update(other, join: str = 'left', overwrite=True, filter_func=None)[source]#
Modify in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
Examples:
>>> df = bpd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = bpd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 [3 rows x 2 columns]
- Parameters:
other (DataFrame, or object coercible into a DataFrame) – Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame.
join ({'left'}, default 'left') – Only left join is implemented, keeping the index and columns of the original object.
overwrite (bool, default True) – How to handle non-NA values for overlapping keys: True: overwrite original DataFrame’s values with values from other. False: only update values that are NA in the original DataFrame.
filter_func (callable(1d-array) -> bool 1d-array, optional) – Can choose to replace values other than NA. Return True for values that should be updated.
- Returns:
This method directly changes calling object.
- Return type:
None
- Raises:
ValueError – If a type of join other than
leftis provided as an argument.