bigframes.pandas.DataFrame.pow#
- DataFrame.pow(other: int | Series, axis: str | int = 'columns') DataFrame[source]#
Get Exponential power of dataframe and other, element-wise (binary operator **).
Equivalent to
dataframe ** other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rpow.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
Note
Mismatched indices will be unioned together.
Examples:
>>> df = bpd.DataFrame({ ... 'A': [1, 2, 3], ... 'B': [4, 5, 6], ... })
You can use method name:
>>> df['A'].pow(df['B']) 0 1 1 32 2 729 dtype: Int64
You can also use arithmetic operator
**:>>> df['A'] ** (df['B']) 0 1 1 32 2 729 dtype: Int64
- Parameters:
- Returns:
DataFrame result of the arithmetic operation.
- Return type: