bigframes.ml.decomposition.PCA#
- class bigframes.ml.decomposition.PCA(n_components: int | float | None = None, *, svd_solver: Literal['full', 'randomized', 'auto'] = 'auto')[source]#
Principal component analysis (PCA).
Examples:
>>> import bigframes.pandas as bpd >>> from bigframes.ml.decomposition import PCA >>> X = bpd.DataFrame({"feat0": [-1, -2, -3, 1, 2, 3], "feat1": [-1, -1, -2, 1, 1, 2]}) >>> pca = PCA(n_components=2).fit(X) >>> pca.predict(X) principal_component_1 principal_component_2 0 -0.755243 0.157628 1 -1.05405 -0.141179 2 -1.809292 0.016449 3 0.755243 -0.157628 4 1.05405 0.141179 5 1.809292 -0.016449 [6 rows x 2 columns] >>> pca.explained_variance_ratio_ principal_component_id explained_variance_ratio 0 1 0.00901 1 0 0.99099 [2 rows x 2 columns]
- Parameters:
n_components (int, float or None, default None) – Number of components to keep. If n_components is not set, all components are kept, n_components = min(n_samples, n_features). If 0 < n_components < 1, select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components.
svd_solver ("full", "randomized" or "auto", default "auto") – The solver to use to calculate the principal components. Details: https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-pca#pca_solver.
Attributes
Principal axes in feature space, representing the directions of maximum variance in the data.
The amount of variance explained by each of the selected components.
Percentage of variance explained by each of the selected components.
Methods
__init__([n_components, svd_solver])detect_anomalies(X, *[, contamination])Detect the anomaly data points of the input.
fit(X[, y])Fit the model according to the given training data.
get_params([deep])Get parameters for this estimator.
predict(X)Predict the closest cluster for each sample in X.
register([vertex_ai_model_id])Register the model to Vertex AI.
score([X, y])Calculate evaluation metrics of the model.
to_gbq(model_name[, replace])Save the model to BigQuery.