bigframes.pandas.api.typing.DataFrameGroupBy.count#
- DataFrameGroupBy.count() DataFrame[source]#
Compute count of group, excluding missing values.
Examples:
For SeriesGroupBy:
>>> lst = ['a', 'a', 'b'] >>> ser = bpd.Series([1, 2, np.nan], index=lst) >>> ser.groupby(level=0).count() a 2 b 0 dtype: Int64
For DataFrameGroupBy:
>>> data = [[1, np.nan, 3], [1, np.nan, 6], [7, 8, 9]] >>> df = bpd.DataFrame(data, columns=["a", "b", "c"], ... index=["cow", "horse", "bull"]) >>> df.groupby(by=["a"]).count() b c a 1 0 2 7 1 1 [2 rows x 2 columns]
- Returns:
Count of values within each group.
- Return type: