bigframes.ml.metrics.mean_squared_error#
- bigframes.ml.metrics.mean_squared_error(y_true: DataFrame | Series, y_pred: DataFrame | Series) float[source]#
Mean squared error regression loss.
Examples:
>>> import bigframes.pandas as bpd >>> import bigframes.ml.metrics
>>> y_true = bpd.DataFrame([3, -0.5, 2, 7]) >>> y_pred = bpd.DataFrame([2.5, 0.0, 2, 8]) >>> mse = bigframes.ml.metrics.mean_squared_error(y_true, y_pred) >>> mse np.float64(0.375)