bigframes.pandas.api.typing.SeriesGroupBy.max#
- SeriesGroupBy.max(*args) Series[source]#
Compute max of group values.
Examples:
For SeriesGroupBy:
>>> lst = ['a', 'a', 'b', 'b'] >>> ser = bpd.Series([1, 2, 3, 4], index=lst) >>> ser.groupby(level=0).max() a 2 b 4 dtype: Int64
For DataFrameGroupBy:
>>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] >>> df = bpd.DataFrame(data, columns=["a", "b", "c"], ... index=["tiger", "leopard", "cheetah", "lion"]) >>> df.groupby(by=["a"]).max() b c a 1 8 5 2 6 9 [2 rows x 2 columns]
- Parameters:
- Returns:
Computed max of values within each group.
- Return type: