bigframes.pandas.api.typing.DataFrameGroupBy.last#
- DataFrameGroupBy.last(numeric_only: bool = False, min_count: int = -1) DataFrame[source]#
Compute the last entry of each column within each group.
Defaults to skipping NA elements.
Examples:
>>> df = bpd.DataFrame(dict(A=[1, 1, 3], B=[5, None, 6], C=[1, 2, 3])) >>> df.groupby("A").last() B C A 1 5.0 2 3 6.0 3 [2 rows x 2 columns]
- Parameters:
numeric_only (bool, default False) – Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data.
min_count (int, default -1) – The required number of valid values to perform the operation. If fewer than
min_countvalid values are present the result will be NA.
- Returns:
Last of values within each group.
- Return type: