bigframes.pandas.DataFrame.reset_index#
- DataFrame.reset_index(level: blocks.LevelsType = None, drop: bool = False, inplace: Literal[False] = False, col_level: int | str = 0, col_fill: Hashable = '', allow_duplicates: bool | None = None, names: None | Hashable | Sequence[Hashable] = None) DataFrame[source]#
- DataFrame.reset_index(level: blocks.LevelsType = None, drop: bool = False, inplace: Literal[True] = False, col_level: int | str = 0, col_fill: Hashable = '', allow_duplicates: bool | None = None, names: None | Hashable | Sequence[Hashable] = None) None
- DataFrame.reset_index(level: blocks.LevelsType = None, drop: bool = False, inplace: bool = False, col_level: int | str = 0, col_fill: Hashable = '', allow_duplicates: bool | None = None, names: None | Hashable | Sequence[Hashable] = None) DataFrame | None
Reset the index.
Reset the index of the DataFrame, and use the default one instead.
Examples:
>>> df = bpd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal <NA> [4 rows x 2 columns]
When we reset the index, the old index is added as a column, and a new sequential index is used:
>>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal <NA> [4 rows x 3 columns]
We can use the
dropparameter to avoid the old index being added as a column:>>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal <NA> [4 rows x 2 columns]
You can also use
reset_indexwithMultiIndex.>>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = ['speed', 'max'] >>> df = bpd.DataFrame([(389.0, 'fly'), ... (24.0, 'fly'), ... (80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed max class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey <NA> jump [4 rows x 2 columns]
>>> df.reset_index() class name speed max 0 bird falcon 389.0 fly 1 bird parrot 24.0 fly 2 mammal lion 80.5 run 3 mammal monkey <NA> jump [4 rows x 4 columns]
>>> df.reset_index(drop=True) speed max 0 389.0 fly 1 24.0 fly 2 80.5 run 3 <NA> jump [4 rows x 2 columns]
- Parameters:
level (int, str, tuple, or list, default None) – Only remove the given levels from the index. Removes all levels by default.
drop (bool, default False) – Do not try to insert index into dataframe columns. This resets the index to the default integer index.
inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one.
col_level (int or str, default 0) – If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.
col_fill (object, default '') – If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.
allow_duplicates (bool, optional, default None) – Allow duplicate column labels to be created.
names (str or 1-dimensional list, default None) – Using the given string, rename the DataFrame column which contains the index data. If the DataFrame has a MultiIndex, this has to be a list or tuple with length equal to the number of levels
- Returns:
DataFrame with the new index.
- Return type: