bigframes.pandas.api.typing.DataFrameGroupBy.agg#
- DataFrameGroupBy.agg(func=None, **kwargs) DataFrame | Series[source]#
Aggregate using one or more operations.
Examples:
>>> data = {"A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860]} >>> df = bpd.DataFrame(data)
The aggregation is for each column.
>>> df.groupby('A').agg('min') B C A 1 1 0.227877 2 3 -0.56286 [2 rows x 2 columns]
Multiple aggregations
>>> df.groupby('A').agg(['min', 'max']) B C min max min max A 1 1 2 0.227877 0.362838 2 3 4 -0.56286 1.267767 [2 rows x 4 columns]
- Parameters:
func (function, str, list, dict or None) –
Function to use for aggregating the data.
Accepted combinations are:
string function name
list of function names, e.g.
['sum', 'mean']dict of axis labels -> function names or list of such.
None, in which case
**kwargsare used with Named Aggregation. Here the output has one column for each element in**kwargs. The name of the column is keyword, whereas the value determines the aggregation used to compute the values in the column.
kwargs – If
funcis None,**kwargsare used to define the output names and aggregations via Named Aggregation. Seefuncentry.
- Returns:
A BigQuery DataFrame.
- Return type: