bigframes.ml.imported.XGBoostModel#

class bigframes.ml.imported.XGBoostModel(model_path: str, *, input: Mapping[str, str] | None = None, output: Mapping[str, str] | None = None, session: Session | None = None)[source]#

Imported XGBoost model.

Parameters:
  • model_path (str) – Cloud Storage path that holds the model files.

  • input (Dict, default None) – Specify the model input schema information when you create the XGBoost model. The input should be the format of {field_name: field_type}. Input is optional only if feature_names and feature_types are both specified in the model file. Supported types are “bool”, “string”, “int64”, “float64”, “array<bool>”, “array<string>”, “array<int64>”, “array<float64>”.

  • output (Dict, default None) – Specify the model output schema information when you create the XGBoost model. The input should be the format of {field_name: field_type}. Output is optional only if feature_names and feature_types are both specified in the model file. Supported types are “bool”, “string”, “int64”, “float64”, “array<bool>”, “array<string>”, “array<int64>”, “array<float64>”.

  • session (BigQuery Session) – BQ session to create the model.

Methods

__init__(model_path, *[, input, output, session])

get_params([deep])

Get parameters for this estimator.

predict(X)

Predict the result from input DataFrame.

register([vertex_ai_model_id])

Register the model to Vertex AI.

to_gbq(model_name[, replace])

Save the model to BigQuery.