bigframes.pandas.DataFrame.sort_values#
- DataFrame.sort_values(by: str | Sequence[str], *, inplace: Literal[False] = False, ascending: bool | Sequence[bool] = True, kind: str = 'quicksort', na_position: Literal['first', 'last'] = 'last') DataFrame[source]#
- DataFrame.sort_values(by: str | Sequence[str], *, inplace: Literal[True] = False, ascending: bool | Sequence[bool] = True, kind: str = 'quicksort', na_position: Literal['first', 'last'] = 'last') None
Sort by the values along row axis.
Examples:
>>> df = bpd.DataFrame({ ... 'col1': ['A', 'A', 'B', pd.NA, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... 'col4': ['a', 'B', 'c', 'D', 'e', 'F'] ... }) >>> df col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 <NA> 8 4 D 4 D 7 2 e 5 C 4 3 F [6 rows x 4 columns]
Sort by col1:
>>> df.sort_values(by=['col1']) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 <NA> 8 4 D [6 rows x 4 columns]
Sort by multiple columns:
>>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 col4 1 A 1 1 B 0 A 2 0 a 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 <NA> 8 4 D [6 rows x 4 columns]
Sort Descending:
>>> df.sort_values(by='col1', ascending=False) col1 col2 col3 col4 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B 3 <NA> 8 4 D [6 rows x 4 columns]
Putting NAs first:
>>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 col4 3 <NA> 8 4 D 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B [6 rows x 4 columns]
- Parameters:
by (str or Sequence[str]) – Name or list of names to sort by.
ascending (bool or Sequence[bool], default True) – Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.
inplace (bool, default False) – If True, perform operation in-place.
kind (str, default 'quicksort') – Choice of sorting algorithm. Accepts ‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’. Ignored except when determining whether to sort stably. ‘mergesort’ or ‘stable’ will result in stable reorder.
na_position ({‘first’, ‘last’}, default last) –
{'first', 'last'}, default ‘last’ Puts NaNs at the beginning if first; last puts NaNs at the end.
- Returns:
DataFrame with sorted values or None if inplace=True.
- Return type:
bigframes.pandas.DataFram or None
- Raises:
ValueError – If value of
na_positionis not one offirstorlast.