bigframes.pandas.api.typing.SeriesGroupBy.var#
- SeriesGroupBy.var(*args, **kwargs) Series[source]#
Compute variance of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
Examples:
For SeriesGroupBy:
>>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] >>> ser = bpd.Series([7, 2, 8, 4, 3, 3], index=lst) >>> ser.groupby(level=0).var() a 10.333333 b 0.333333 dtype: Float64
For DataFrameGroupBy:
>>> data = {'a': [1, 3, 5, 7, 7, 8, 3], 'b': [1, 4, 8, 4, 4, 2, 1]} >>> df = bpd.DataFrame(data, index=['dog', 'dog', 'dog', ... 'mouse', 'mouse', 'mouse', 'mouse']) >>> df.groupby(level=0).var() a b dog 4.0 12.333333 mouse 4.916667 2.25 [2 rows x 2 columns]
- Parameters:
numeric_only (bool, default False) – Include only float, int or boolean data.
- Returns:
Variance of values within each group.
- Return type: