bigframes.pandas.get_dummies#
- bigframes.pandas.get_dummies(data: DataFrame | Series, prefix: List | dict | str | None = None, prefix_sep: List | dict | str | None = '_', dummy_na: bool = False, columns: List | None = None, drop_first: bool = False, dtype: Any = None) DataFrame[source]#
Convert categorical variable into dummy/indicator variables.
Each variable is converted in as many 0/1 variables as there are different values. Columns in the output are each named after a value; if the input is a DataFrame, the name of the original variable is prepended to the value.
Examples:
>>> import bigframes.pandas as pd >>> pd.options.display.progress_bar = None >>> s = pd.Series(list('abca')) >>> pd.get_dummies(s) a b c 0 True False False 1 False True False 2 False False True 3 True False False [4 rows x 3 columns]
>>> s1 = pd.Series(['a', 'b', None]) >>> pd.get_dummies(s1) a b 0 True False 1 False True 2 False False [3 rows x 2 columns]
>>> pd.get_dummies(s1, dummy_na=True) a b <NA> 0 True False False 1 False True False 2 False False True [3 rows x 3 columns]
>>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]}) >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 True False False True False 1 2 False True True False False 2 3 True False False False True [3 rows x 6 columns]
>>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 True False False 1 False True False 2 False False True 3 True False False 4 True False False [5 rows x 3 columns]
>>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True) b c 0 False False 1 True False 2 False True 3 False False 4 False False [5 rows x 2 columns]
- Parameters:
data (Series or DataFrame) – Data of which to get dummy indicators.
prefix (str, list of str, or dict of str, default None) – String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column names to prefixes.
prefix_sep (str, list of str, or dict of str, default '_') – Separator/delimiter to use, appended to prefix. Or pass a list or dictionary as with prefix.
dummy_na (bool, default False) – Add a column to indicate NaNs, if False NaNs are ignored.
columns (list-like, default None) – Column names in the DataFrame to be encoded. If columns is None then only the columns with string dtype will be converted.
drop_first (bool, default False) – Whether to get k-1 dummies out of k categorical levels by removing the first level.
dtype (dtype, default bool) – Data type for new columns. Only a single dtype is allowed.
- Returns:
Dummy-coded data. If data contains other columns than the dummy-coded one(s), these will be prepended, unaltered, to the result.
- Return type: