bigframes.pandas.Series.kurt#
- Series.kurt()[source]#
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
Examples:
>>> s = bpd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: Int64
>>> s.kurt() np.float64(1.5)
With a DataFrame
>>> df = bpd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 [4 rows x 2 columns]
>>> df.kurt() a 1.5 b 4.0 dtype: Float64
- Returns:
Unbiased kurtosis over requested axis.
- Return type:
scalar or scalar