bigframes.ml.model_selection.KFold#
- class bigframes.ml.model_selection.KFold(n_splits: int = 5, *, random_state: int | None = None)[source]#
K-Fold cross-validator.
Split data in train/test sets. Split dataset into k consecutive folds.
Each fold is then used once as a validation while the k - 1 remaining folds form the training set.
Examples:
>>> import bigframes.pandas as bpd >>> from bigframes.ml.model_selection import KFold >>> X = bpd.DataFrame({"feat0": [1, 3, 5], "feat1": [2, 4, 6]}) >>> y = bpd.DataFrame({"label": [1, 2, 3]}) >>> kf = KFold(n_splits=3, random_state=42) >>> for i, (X_train, X_test, y_train, y_test) in enumerate(kf.split(X, y)): ... print(f"Fold {i}:") ... print(f" X_train: {X_train}") ... print(f" X_test: {X_test}") ... print(f" y_train: {y_train}") ... print(f" y_test: {y_test}") ... Fold 0: X_train: feat0 feat1 1 3 4 2 5 6 [2 rows x 2 columns] X_test: feat0 feat1 0 1 2 [1 rows x 2 columns] y_train: label 1 2 2 3 [2 rows x 1 columns] y_test: label 0 1 [1 rows x 1 columns] Fold 1: X_train: feat0 feat1 0 1 2 2 5 6 [2 rows x 2 columns] X_test: feat0 feat1 1 3 4 [1 rows x 2 columns] y_train: label 0 1 2 3 [2 rows x 1 columns] y_test: label 1 2 [1 rows x 1 columns] Fold 2: X_train: feat0 feat1 0 1 2 1 3 4 [2 rows x 2 columns] X_test: feat0 feat1 2 5 6 [1 rows x 2 columns] y_train: label 0 1 1 2 [2 rows x 1 columns] y_test: label 2 3 [1 rows x 1 columns]
- Parameters:
Methods