bigframes.pandas.DataFrame.rpow#
- DataFrame.rpow(other: int | Series, axis: str | int = 'columns') DataFrame[source]#
Get Exponential power of dataframe and other, element-wise (binary operator rpow).
Equivalent to
other ** dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, pow.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
Note
Mismatched indices will be unioned together.
Examples:
>>> df = bpd.DataFrame({ ... 'A': [1, 2, 3], ... 'B': [4, 5, 6], ... }) >>> df['A'].rpow(df['B']) 0 4 1 25 2 216 dtype: Int64
It’s equivalent to using arithmetic operator:
**:>>> df['B'] ** (df['A']) 0 4 1 25 2 216 dtype: Int64
- Parameters:
- Returns:
DataFrame result of the arithmetic operation.
- Return type: