bigframes.pandas.api.typing.DataFrameGroupBy.mean#
- DataFrameGroupBy.mean(numeric_only: bool = False, *args) DataFrame[source]#
Compute mean of groups, excluding missing values.
Examples:
>>> df = bpd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5], ... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C'])
Groupby one column and return the mean of the remaining columns in each group.
>>> df.groupby('A').mean() B C A 1 3.0 1.333333 2 4.0 1.5 [2 rows x 2 columns]
Groupby two columns and return the mean of the remaining column.
>>> df.groupby(['A', 'B']).mean() C A B 1 2.0 2.0 4.0 1.0 2 3.0 1.0 5.0 2.0 [4 rows x 1 columns]
Groupby one column and return the mean of only particular column in the group.
>>> df.groupby('A')['B'].mean() A 1 3.0 2 4.0 Name: B, dtype: Float64
- Parameters:
numeric_only (bool, default False) – Include only float, int, boolean columns.
- Returns:
Mean of groups.
- Return type: