bigframes.bigquery.load_data#

bigframes.bigquery.load_data(table_name: str, *, write_disposition: str = 'INTO', columns: Mapping[str, str] | None = None, partition_by: list[str] | None = None, cluster_by: list[str] | None = None, table_options: Mapping[str, str | int | float | bool | list] | None = None, from_files_options: Mapping[str, str | int | float | bool | list], with_partition_columns: Mapping[str, str] | None = None, connection_name: str | None = None, session: Session | None = None) Series[source]#

Loads data into a BigQuery table. See the BigQuery LOAD DATA DDL syntax for additional reference. :param table_name: The name of the table in BigQuery. :type table_name: str :param write_disposition: Whether to replace the table if it already exists (“OVERWRITE”) or append to it (“INTO”). :type write_disposition: str, default “INTO” :param columns: The table’s schema. :type columns: Mapping[str, str], optional :param partition_by: A list of partition expressions to partition the table by. See https://docs.cloud.google.com/bigquery/docs/reference/standard-sql/load-statements#partition_expression. :type partition_by: list[str], optional :param cluster_by: A list of columns to cluster the table by. :type cluster_by: list[str], optional :param table_options: The table options. :type table_options: Mapping[str, Union[str, int, float, bool, list]], optional :param from_files_options: The options for loading data from files. :type from_files_options: Mapping[str, Union[str, int, float, bool, list]] :param with_partition_columns: The table’s partition columns. :type with_partition_columns: Mapping[str, str], optional :param connection_name: The connection to use for the table. :type connection_name: str, optional :param session: The session to use. If not provided, the default session is used. :type session: bigframes.session.Session, optional

Returns:

A Series with object dtype containing the table metadata. Reference the BigQuery Table REST API reference for available fields.

Return type:

pandas.Series