bigframes.pandas.DataFrame.var#
- DataFrame.var(axis: str | int = 0, *, numeric_only: bool = False) Series[source]#
Return unbiased variance over requested axis.
Normalized by N-1 by default.
Examples:
>>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]}) >>> df A B 0 1 2 1 3 4 [2 rows x 2 columns]
Calculating the variance of each column (the default behavior without an explicit axis parameter).
>>> df.var() A 2.0 B 2.0 dtype: Float64
Calculating the variance of each row.
>>> df.var(axis=1) 0 0.5 1 0.5 dtype: Float64
- Parameters:
axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
numeric_only (bool. default False) – Default False. Include only float, int, boolean columns.
- Returns:
Series with unbiased variance over requested axis.
- Return type: