bigframes.pandas.DataFrame.pivot_table#
- DataFrame.pivot_table(values: Hashable | Sequence[Hashable] | None = None, index: Hashable | Sequence[Hashable] | None = None, columns: Hashable | Sequence[Hashable] = None, aggfunc: str = 'mean', fill_value=None, margins: bool = False, dropna: bool = True, margins_name: Hashable = 'All', observed: bool = False, sort: bool = True) DataFrame[source]#
Create a spreadsheet-style pivot table as a DataFrame.
The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame.
Examples:
>>> import bigframes.pandas as bpd >>> df = bpd.DataFrame({ ... 'Product': ['Product A', 'Product B', 'Product A', 'Product B', 'Product A', 'Product B'], ... 'Region': ['East', 'West', 'East', 'West', 'West', 'East'], ... 'Sales': [100, 200, 150, 100, 200, 150], ... 'Rating': [3, 5, 4, 3, 3, 5] ... }) >>> df Product Region Sales Rating 0 Product A East 100 3 1 Product B West 200 5 2 Product A East 150 4 3 Product B West 100 3 4 Product A West 200 3 5 Product B East 150 5 [6 rows x 4 columns]
Using pivot_table with default aggfunc “mean”:
>>> pivot_table = df.pivot_table( ... values=['Sales', 'Rating'], ... index='Product', ... columns='Region' ... ) >>> pivot_table Rating Sales Region East West East West Product Product A 3.5 3.0 125.0 200.0 Product B 5.0 4.0 150.0 150.0 [2 rows x 4 columns]
Using pivot_table with specified aggfunc “max”:
>>> pivot_table = df.pivot_table( ... values=['Sales', 'Rating'], ... index='Product', ... columns='Region', ... aggfunc="max" ... ) >>> pivot_table Rating Sales Region East West East West Product Product A 4 3 150 200 Product B 5 5 150 200 [2 rows x 4 columns]
- Parameters:
values (str, object or a list of the previous, optional) – Column(s) to use for populating new frame’s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns.
index (str or object or a list of str, optional) – Column to use to make new frame’s index. If not given, uses existing index.
columns (str or object or a list of str) – Column to use to make new frame’s columns.
aggfunc (str, default "mean") – Aggregation function name to compute summary statistics (e.g., ‘sum’, ‘mean’).
fill_value (scalar, default None) – Value to replace missing values with (in the resulting pivot table, after aggregation).
- Returns:
An Excel style pivot table.
- Return type: