bigframes.pandas.api.typing.DataFrameGroupBy.cumprod#
- DataFrameGroupBy.cumprod(*args, **kwargs) DataFrame[source]#
Cumulative product for each group.
Examples:
For SeriesGroupBy:
>>> lst = ['a', 'a', 'b'] >>> ser = bpd.Series([6, 2, 0], index=lst) >>> ser.groupby(level=0).cumprod() a 6.0 a 12.0 b 0.0 dtype: Float64
For DataFrameGroupBy:
>>> data = [[1, 8, 2], [1, 2, 5], [2, 6, 9]] >>> df = bpd.DataFrame(data, columns=["a", "b", "c"], ... index=["cow", "horse", "bull"]) >>> df.groupby("a").cumprod() b c cow 8.0 2.0 horse 16.0 10.0 bull 6.0 9.0 [3 rows x 2 columns]
- Returns:
Cumulative product for each group.
- Return type: