bigframes.pandas.api.typing.SeriesGroupBy.skew#
- SeriesGroupBy.skew(*args, **kwargs) Series[source]#
Return unbiased skew within groups.
Normalized by N-1.
Examples:
For SeriesGroupBy:
>>> ser = bpd.Series([390., 350., 357., np.nan, 22., 20., 30.], ... index=['Falcon', 'Falcon', 'Falcon', 'Falcon', ... 'Parrot', 'Parrot', 'Parrot'], ... name="Max Speed") >>> ser.groupby(level=0).skew() Falcon 1.525174 Parrot 1.457863 Name: Max Speed, dtype: Float64
- Parameters:
numeric_only (bool, default False) – Include only float, int or boolean data.
- Returns:
Variance of values within each group.
- Return type: