bigframes.pandas#
BigQuery DataFrames provides a DataFrame API backed by the BigQuery engine.
Functions
|
Searches through BigQuery tables and routines and deletes the ones created during the session with the given session id. |
Start a fresh session the next time a function requires a session. |
|
|
Concatenate BigQuery DataFrames objects along a particular axis. |
|
Compute a simple cross tabulation of two (or more) factors. |
|
Bin values into discrete intervals. |
|
Orchestrates the creation of a BigQuery remote function that deploys immediately. |
|
Orchestrates the creation of a BigQuery UDF that deploys immediately. |
|
Create a BigFrames DataFrame that contains a BigFrames Blob column from a global wildcard path. |
Gets the session id that is used whenever a custom session has not been provided. |
|
|
Convert categorical variable into dummy/indicator variables. |
Gets the global session. |
|
|
Merge DataFrame objects with a database-style join. |
|
Quantile-based discretization function. |
|
Load a PyArrow Table to a BigQuery DataFrames DataFrame. |
|
Loads data from a comma-separated values (csv) file into a DataFrame. |
|
Loads a DataFrame from BigQuery. |
|
Loads a BigQuery function from BigQuery. |
|
Loads a BigQuery ML model from BigQuery. |
|
Read an existing object table to create a BigFrames Blob DataFrame. |
|
Turn a SQL query into a DataFrame. |
|
Turn a BigQuery table into a DataFrame. |
|
Convert a JSON string to DataFrame object. |
Loads DataFrame from a pandas DataFrame. |
|
|
Load a Parquet object from the file path (local or Cloud Storage), returning a DataFrame. |
|
Load pickled BigFrames object (or any object) from file. |
|
Decorator to turn a user defined function into a BigQuery remote function. |
Start a fresh session the next time a function requires a session. |
|
This function converts a scalar, array-like or Series to a datetime object. |
|
|
Converts a scalar or Series to a timedelta object. |
|
Decorator to turn a Python user defined function (udf) into a [BigQuery managed user-defined function](https://cloud.google.com/bigquery/docs/user-defined-functions-python). |
Classes
|
Two-dimensional, size-mutable, potentially heterogeneous tabular data. |
|
Immutable sequence used for indexing and alignment with datetime-like values |
|
Immutable sequence used for indexing and alignment. |
|
A multi-level, or hierarchical, index object for pandas objects. |
|
Create new instance of NamedAgg(column, aggfunc) |
|
Module Attributes
- pandas.NA = <NA>
- pandas.BooleanDtype = <class 'pandas.core.arrays.boolean.BooleanDtype'>
- pandas.Float64Dtype = <class 'pandas.core.arrays.floating.Float64Dtype'>
- pandas.Int64Dtype = <class 'pandas.core.arrays.integer.Int64Dtype'>
- pandas.StringDtype = <class 'pandas.core.arrays.string_.StringDtype'>
- pandas.ArrowDtype = <class 'pandas.core.dtypes.dtypes.ArrowDtype'>
- pandas.options = <bigframes._config.global_options.Options object>
- pandas.option_context = <class 'bigframes_vendored.pandas._config.config.option_context'>