bigframes.pandas#

BigQuery DataFrames provides a DataFrame API backed by the BigQuery engine.

Functions

clean_up_by_session_id(session_id[, ...])

Searches through BigQuery tables and routines and deletes the ones created during the session with the given session id.

close_session()

Start a fresh session the next time a function requires a session.

concat()

Concatenate BigQuery DataFrames objects along a particular axis.

crosstab(index, columns[, values, rownames, ...])

Compute a simple cross tabulation of two (or more) factors.

cut(x, bins, *[, right, labels, session])

Bin values into discrete intervals.

deploy_remote_function(func, **kwargs)

Orchestrates the creation of a BigQuery remote function that deploys immediately.

deploy_udf(func, **kwargs)

Orchestrates the creation of a BigQuery UDF that deploys immediately.

from_glob_path(path, *[, connection, name])

Create a BigFrames DataFrame that contains a BigFrames Blob column from a global wildcard path.

get_default_session_id()

Gets the session id that is used whenever a custom session has not been provided.

get_dummies(data[, prefix, prefix_sep, ...])

Convert categorical variable into dummy/indicator variables.

get_global_session()

Gets the global session.

merge(left, right[, how, on, left_on, ...])

Merge DataFrame objects with a database-style join.

qcut(x, q, *[, labels, duplicates])

Quantile-based discretization function.

read_arrow(pa_table)

Load a PyArrow Table to a BigQuery DataFrames DataFrame.

read_csv(filepath_or_buffer, *[, sep, ...])

Loads data from a comma-separated values (csv) file into a DataFrame.

read_gbq([columns, configuration, ...])

Loads a DataFrame from BigQuery.

read_gbq_function(function_name[, ...])

Loads a BigQuery function from BigQuery.

read_gbq_model(model_name)

Loads a BigQuery ML model from BigQuery.

read_gbq_object_table(object_table, *[, name])

Read an existing object table to create a BigFrames Blob DataFrame.

read_gbq_query([columns, configuration, ...])

Turn a SQL query into a DataFrame.

read_gbq_table([columns, max_results, ...])

Turn a BigQuery table into a DataFrame.

read_json(path_or_buf, *[, orient, dtype, ...])

Convert a JSON string to DataFrame object.

read_pandas()

Loads DataFrame from a pandas DataFrame.

read_parquet(path, *[, engine, write_engine])

Load a Parquet object from the file path (local or Cloud Storage), returning a DataFrame.

read_pickle(filepath_or_buffer[, ...])

Load pickled BigFrames object (or any object) from file.

remote_function([input_types, output_type, ...])

Decorator to turn a user defined function into a BigQuery remote function.

reset_session()

Start a fresh session the next time a function requires a session.

to_datetime()

This function converts a scalar, array-like or Series to a datetime object.

to_timedelta(arg[, unit, session])

Converts a scalar or Series to a timedelta object.

udf(*[, input_types, output_type, ...])

Decorator to turn a Python user defined function (udf) into a [BigQuery managed user-defined function](https://cloud.google.com/bigquery/docs/user-defined-functions-python).

Classes

DataFrame([data, index, columns, dtype, ...])

Two-dimensional, size-mutable, potentially heterogeneous tabular data.

DatetimeIndex([data, dtype, name, session])

Immutable sequence used for indexing and alignment with datetime-like values

Index([data, dtype, name, session])

Immutable sequence used for indexing and alignment.

MultiIndex([data, dtype, name, session])

A multi-level, or hierarchical, index object for pandas objects.

NamedAgg(column, aggfunc)

Create new instance of NamedAgg(column, aggfunc)

Series([data, index, dtype, name, copy, session])

Module Attributes

pandas.NA = <NA>
pandas.BooleanDtype = <class 'pandas.core.arrays.boolean.BooleanDtype'>
pandas.Float64Dtype = <class 'pandas.core.arrays.floating.Float64Dtype'>
pandas.Int64Dtype = <class 'pandas.core.arrays.integer.Int64Dtype'>
pandas.StringDtype = <class 'pandas.core.arrays.string_.StringDtype'>
pandas.ArrowDtype = <class 'pandas.core.dtypes.dtypes.ArrowDtype'>
pandas.options = <bigframes._config.global_options.Options object>
pandas.option_context = <class 'bigframes_vendored.pandas._config.config.option_context'>