bigframes.pandas.DataFrame.bar#
- DataFrame.bar(x: Hashable | None = None, y: Hashable | None = None, **kwargs)[source]#
Draw a vertical bar plot.
This function calls pandas.plot to generate a plot with a random sample of items. For consistent results, the random sampling is reproducible. Use the sampling_random_state parameter to modify the sampling seed.
Examples:
Basic plot.
>>> import bigframes.pandas as bpd >>> df = bpd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]}) >>> ax = df.plot.bar(x='lab', y='val', rot=0)
Plot a whole dataframe to a bar plot. Each column is assigned a distinct color, and each row is nested in a group along the horizontal axis.
>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = bpd.DataFrame({'speed': speed, 'lifespan': lifespan}, index=index) >>> ax = df.plot.bar(rot=0)
Plot stacked bar charts for the DataFrame.
>>> ax = df.plot.bar(stacked=True)
If you don’t like the default colours, you can specify how you’d like each column to be colored.
>>> axes = df.plot.bar( ... rot=0, subplots=True, color={"speed": "red", "lifespan": "green"} ... )
- Parameters:
x (label or position, optional) – Allows plotting of one column versus another. If not specified, the index of the DataFrame is used.
y (label or position, optional) – Allows plotting of one column versus another. If not specified, all numerical columns are used.
**kwargs – Additional keyword arguments are documented in
DataFrame.plot().
- Returns:
Area plot, or array of area plots if subplots is True.
- Return type:
matplotlib.axes.Axes or numpy.ndarray