bigframes.pandas.Series.iloc#
- property Series.iloc: IlocSeriesIndexer#
Purely integer-location based indexing for selection by position.
Examples:
>>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000}] >>> df = bpd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 [3 rows x 4 columns]
Indexing just the rows
With a scalar integer.
>>> type(df.iloc[0]) <class 'pandas.core.series.Series'>
>>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: Int64
With a list of integers.
>>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: Int64
>>> type(df.iloc[[0]]) <class 'bigframes.dataframe.DataFrame'>
>>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 [2 rows x 4 columns]
With a slice object.
>>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 [3 rows x 4 columns]
Indexing both axes
You can mix the indexer types for the index and columns. Use : to select the entire axis.
With scalar integers.
>>> df.iloc[0, 1] np.int64(2)
- Returns:
Purely integer-location Indexers.
- Return type:
bigframes.core.indexers.IlocSeriesIndexer