bigframes.ml.metrics.recall_score#
- bigframes.ml.metrics.recall_score(y_true: DataFrame | Series, y_pred: DataFrame | Series, *, average: str | None = 'binary') Series[source]#
Compute the recall.
The recall is the ratio
tp / (tp + fn), wheretpis the number of true positives andfnthe number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.The best value is 1 and the worst value is 0.
Examples:
>>> import bigframes.pandas as bpd >>> import bigframes.ml.metrics
>>> y_true = bpd.DataFrame([0, 1, 2, 0, 1, 2]) >>> y_pred = bpd.DataFrame([0, 2, 1, 0, 0, 1]) >>> recall_score = bigframes.ml.metrics.recall_score(y_true, y_pred, average=None) >>> recall_score 0 1 1 0 2 0 dtype: int64
- Parameters:
y_true (Series or DataFrame of shape (n_samples,)) – Ground truth (correct) target values.
y_pred (Series or DataFrame of shape (n_samples,)) – Estimated targets as returned by a classifier.
average ({'micro', 'macro', 'samples', 'weighted', 'binary'} or None, default='binary') – This parameter is required for multiclass/multilabel targets. Possible values are ‘None’, ‘micro’, ‘macro’, ‘samples’, ‘weighted’, ‘binary’. Only average=None is supported.
- Returns:
- Recall
of the positive class in binary classification or weighted average of the recall of each class for the multiclass task.
- Return type:
float (if average is not None) or Series of float of shape n_unique_labels,)