bigframes.ml.preprocessing.KBinsDiscretizer#

class bigframes.ml.preprocessing.KBinsDiscretizer(n_bins: int = 5, strategy: Literal['uniform', 'quantile'] = 'quantile')[source]#

Bin continuous data into intervals.

Parameters:
  • n_bins (int, default 5) – The number of bins to produce. Raises ValueError if n_bins < 2.

  • strategy ({'uniform', 'quantile'}, default='quantile') – Strategy used to define the widths of the bins. ‘uniform’: All bins in each feature have identical widths. ‘quantile’: All bins in each feature have the same number of points.

Methods

__init__([n_bins, strategy])

fit(X[, y])

Fit the estimator.

fit_transform(X[, y])

Fit to data, then transform it.

get_params([deep])

Get parameters for this estimator.

to_gbq(model_name[, replace])

Save the transformer as a BigQuery model.

transform(X)

Discretize the data.