bigframes.pandas.api.typing.DataFrameGroupBy.kurtosis#

DataFrameGroupBy.kurtosis(*, numeric_only: bool = False) DataFrame#

Return unbiased kurtosis over requested axis.

Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

Examples:

>>> lst = ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'b']
>>> ser = bpd.Series([0, 1, 1, 0, 0, 1, 2, 4, 5], index=lst)
>>> ser.groupby(level=0).kurtosis()
a        -6.0
b   -1.963223
dtype: Float64
Parameters:

numeric_only (bool, default False) – Include only float, int or boolean data.

Returns:

Variance of values within each group.

Return type:

bigframes.pandas.DataFrame or bigframes.pandas.Series