bigframes.pandas.api.typing.DataFrameGroupBy.median#
- DataFrameGroupBy.median(numeric_only: bool = False, *, exact: bool = True) DataFrame[source]#
Compute median of groups, excluding missing values.
Examples:
For SeriesGroupBy:
>>> import bigframes.pandas as bpd >>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] >>> ser = bpd.Series([7, 2, 8, 4, 3, 3], index=lst) >>> ser.groupby(level=0).median() a 7.0 b 3.0 dtype: Float64
For DataFrameGroupBy:
>>> data = {'a': [1, 3, 5, 7, 7, 8, 3], 'b': [1, 4, 8, 4, 4, 2, 1]} >>> df = bpd.DataFrame(data, index=['dog', 'dog', 'dog', ... 'mouse', 'mouse', 'mouse', 'mouse']) >>> df.groupby(level=0).median() a b dog 3.0 4.0 mouse 7.0 3.0 [2 rows x 2 columns]
- Parameters:
- Returns:
Median of groups.
- Return type: