bigframes.ml.forecasting.ARIMAPlus.score#

ARIMAPlus.score(X: DataFrame | Series | DataFrame | Series, y: DataFrame | Series | DataFrame | Series, id_col: DataFrame | Series | DataFrame | Series | None = None) DataFrame[source]#

Calculate evaluation metrics of the model.

Note

Output matches that of the BigQuery ML.EVALUATE function. See: https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-evaluate#time_series_models for the outputs relevant to this model type.

Parameters:
  • bigframes.series.Series (y (bigframes.dataframe.DataFrame or)

  • pandas.core.series.Series) (or pandas.core.frame.DataFrame or) – A dataframe or series only contains 1 column as evaluation timestamp. The timestamp must be within the horizon of the model, which by default is 1000 data points.

  • bigframes.series.Series

  • pandas.core.series.Series) – A dataframe or series only contains 1 column as evaluation numeric values.

  • (Optional[bigframes.dataframe.DataFrame] (id_col)

  • Optional[bigframes.series.Series] (or)

  • Optional[pandas.core.frame.DataFrame] (or)

  • Optional[pandas.core.series.Series] (or)

  • None (or) – An optional dataframe or series contains at least 1 column as evaluation id column.

  • None) (default) – An optional dataframe or series contains at least 1 column as evaluation id column.

Returns:

A DataFrame as evaluation result.

Return type:

bigframes.dataframe.DataFrame