bigframes.pandas.api.typing.DataFrameGroupBy.first#
- DataFrameGroupBy.first(numeric_only: bool = False, min_count: int = -1) DataFrame[source]#
Compute the first entry of each column within each group.
Defaults to skipping NA elements.
Examples:
>>> import bigframes.pandas as bpd >>> df = bpd.DataFrame(dict(A=[1, 1, 3], B=[None, 5, 6], C=[1, 2, 3])) >>> df.groupby("A").first() B C A 1 5.0 1 3 6.0 3 [2 rows x 2 columns]
>>> df.groupby("A").first(min_count=2) B C A 1 <NA> 1 3 <NA> <NA> [2 rows x 2 columns]
- Parameters:
numeric_only (bool, default False) – Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data.
min_count (int, default -1) – The required number of valid values to perform the operation. If fewer than
min_countvalid values are present the result will be NA.
- Returns:
First of values within each group.
- Return type: