bigframes.geopandas.GeoSeries.astype#
- GeoSeries.astype(dtype: Literal['boolean', 'Float64', 'Int64', 'int64[pyarrow]', 'string', 'string[pyarrow]', 'timestamp[us, tz=UTC][pyarrow]', 'timestamp[us][pyarrow]', 'date32[day][pyarrow]', 'time64[us][pyarrow]', 'decimal128(38, 9)[pyarrow]', 'decimal256(76, 38)[pyarrow]', 'binary[pyarrow]', 'duration[us][pyarrow]'] | BooleanDtype | Float64Dtype | Int64Dtype | StringDtype | ArrowDtype | GeometryDtype, *, errors: Literal['raise', 'null'] = 'raise') Series#
Cast a pandas object to a specified dtype
dtype.Examples:
Create a DataFrame:
>>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = bpd.DataFrame(data=d) >>> df.dtypes col1 Int64 col2 Int64 dtype: object
Cast all columns to
Float64:>>> df.astype('Float64').dtypes col1 Float64 col2 Float64 dtype: object
Create a series of type
Int64:>>> ser = bpd.Series([2023010000246789, 1624123244123101, 1054834234120101], dtype='Int64') >>> ser 0 2023010000246789 1 1624123244123101 2 1054834234120101 dtype: Int64
Convert to
Float64type:>>> ser.astype('Float64') 0 2023010000246789.0 1 1624123244123101.0 2 1054834234120101.0 dtype: Float64
Convert to
pd.ArrowDtype(pa.timestamp("us", tz="UTC"))type:>>> ser.astype("timestamp[us, tz=UTC][pyarrow]") 0 2034-02-08 11:13:20.246789+00:00 1 2021-06-19 17:20:44.123101+00:00 2 2003-06-05 17:30:34.120101+00:00 dtype: timestamp[us, tz=UTC][pyarrow]
Note that this is equivalent of using
to_datetimewithunit='us':>>> bpd.to_datetime(ser, unit='us', utc=True) 0 2034-02-08 11:13:20.246789+00:00 1 2021-06-19 17:20:44.123101+00:00 2 2003-06-05 17:30:34.120101+00:00 dtype: timestamp[us, tz=UTC][pyarrow]
Convert
pd.ArrowDtype(pa.timestamp("us", tz="UTC"))type toInt64type:>>> timestamp_ser = ser.astype("timestamp[us, tz=UTC][pyarrow]") >>> timestamp_ser.astype('Int64') 0 2023010000246789 1 1624123244123101 2 1054834234120101 dtype: Int64
- Parameters:
dtype (str, data type or pandas.ExtensionDtype) – A dtype supported by BigQuery DataFrame include
'boolean','Float64','Int64','int64\[pyarrow\]','string','string\[pyarrow\]','timestamp\[us, tz=UTC\]\[pyarrow\]','timestamp\[us\]\[pyarrow\]','date32\[day\]\[pyarrow\]','time64\[us\]\[pyarrow\]'. A pandas.ExtensionDtype includepandas.BooleanDtype(),pandas.Float64Dtype(),pandas.Int64Dtype(),pandas.StringDtype(storage="pyarrow"),pd.ArrowDtype(pa.date32()),pd.ArrowDtype(pa.time64("us")),pd.ArrowDtype(pa.timestamp("us")),pd.ArrowDtype(pa.timestamp("us", tz="UTC")).errors ({'raise', 'null'}, default 'raise') – Control raising of exceptions on invalid data for provided dtype. If ‘raise’, allow exceptions to be raised if any value fails cast If ‘null’, will assign null value if value fails cast
- Returns:
A BigQuery DataFrame.
- Return type: