bigframes.ml.decomposition.PCA.components_#

property PCA.components_: DataFrame#

Principal axes in feature space, representing the directions of maximum variance in the data.

Returns:

DataFrame of principal components, containing following columns:

principal_component_id: An integer that identifies the principal component.

feature: The column name that contains the feature.

numerical_value: If feature is numeric, the value of feature for the principal component that principal_component_id identifies. If feature isn’t numeric, the value is NULL.

categorical_value: A list of mappings containing information about categorical features. Each mapping contains the following fields:

categorical_value.category: The name of each category.

categorical_value.value: The value of categorical_value.category for the centroid that centroid_id identifies.

The output contains one row per feature per component.

Return type:

bigframes.dataframe.DataFrame