bigframes.pandas.concat#
- bigframes.pandas.concat(objs: Iterable[bigframes.series.Series], *, axis: Literal['index', 0] = 0, join='outer', ignore_index=False) bigframes.series.Series[source]#
- bigframes.pandas.concat(objs: Iterable[bigframes.dataframe.DataFrame], *, axis: Literal['index', 0] = 0, join='outer', ignore_index=False) bigframes.dataframe.DataFrame
- bigframes.pandas.concat(objs: Iterable[bigframes.dataframe.DataFrame | bigframes.series.Series], *, axis: Literal['columns', 1], join='outer', ignore_index=False) bigframes.dataframe.DataFrame
- bigframes.pandas.concat(objs: Iterable[bigframes.dataframe.DataFrame | bigframes.series.Series], *, axis=0, join='outer', ignore_index=False) bigframes.dataframe.DataFrame | bigframes.series.Series
Concatenate BigQuery DataFrames objects along a particular axis.
Allows optional set logic along the other axes.
Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.
Note
It is not recommended to build DataFrames by adding single rows in a for loop. Build a list of rows and make a DataFrame in a single concat.
Examples:
>>> import bigframes.pandas as pd >>> pd.options.display.progress_bar = None
Combine two
Series.>>> s1 = pd.Series(['a', 'b']) >>> s2 = pd.Series(['c', 'd']) >>> pd.concat([s1, s2]) 0 a 1 b 0 c 1 d dtype: string
Clear the existing index and reset it in the result by setting the
ignore_indexoption toTrue.>>> pd.concat([s1, s2], ignore_index=True) 0 a 1 b 2 c 3 d dtype: string
Combine two
DataFrameobjects with identical columns.>>> df1 = pd.DataFrame([['a', 1], ['b', 2]], ... columns=['letter', 'number']) >>> df1 letter number 0 a 1 1 b 2 [2 rows x 2 columns] >>> df2 = pd.DataFrame([['c', 3], ['d', 4]], ... columns=['letter', 'number']) >>> df2 letter number 0 c 3 1 d 4 [2 rows x 2 columns] >>> pd.concat([df1, df2]) letter number 0 a 1 1 b 2 0 c 3 1 d 4 [4 rows x 2 columns]
Combine
DataFrameobjects with overlapping columns and return everything. Columns outside the intersection will be filled withNaNvalues.>>> df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']], ... columns=['letter', 'number', 'animal']) >>> df3 letter number animal 0 c 3 cat 1 d 4 dog [2 rows x 3 columns] >>> pd.concat([df1, df3]) letter number animal 0 a 1 <NA> 1 b 2 <NA> 0 c 3 cat 1 d 4 dog [4 rows x 3 columns]
Combine
DataFrameobjects with overlapping columns and return only those that are shared by passinginnerto thejoinkeyword argument.>>> pd.concat([df1, df3], join="inner") letter number 0 a 1 1 b 2 0 c 3 1 d 4 [4 rows x 2 columns]
- Parameters:
objs (list of objects) – Objects to concatenate. Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised.
axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to concatenate along.
join ({'inner', 'outer'}, default 'outer') – How to handle indexes on other axis (or axes).
ignore_index (bool, default False) – If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, …, n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join.
- Returns:
When concatenating all
Seriesalong the index (axis=0), aSeriesis returned. Whenobjscontains at least oneDataFrame, aDataFrameis returned.- Return type: