bigframes.pandas.DataFrame.drop#
- DataFrame.drop(labels: Any = None, *, axis: Union[int, str] = 0, index: Any = None, columns: blocks.Label | Sequence[blocks.Label] = None, level: Optional[LevelType] = None, inplace: Literal[False] = False) DataFrame[source]#
- DataFrame.drop(labels: Any = None, *, axis: Union[int, str] = 0, index: Any = None, columns: blocks.Label | Sequence[blocks.Label] = None, level: Optional[LevelType] = None, inplace: Literal[True]) None
Drop specified labels from columns.
Remove columns by directly specifying column names.
Examples:
>>> df = bpd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 [3 rows x 4 columns]
Drop columns:
>>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 [3 rows x 2 columns]
>>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 [3 rows x 2 columns]
Drop a row by index:
>>> df.drop([0, 1]) A B C D 2 8 9 10 11 [1 rows x 4 columns]
Drop columns and/or rows of MultiIndex DataFrame:
>>> midx = pd.MultiIndex(levels=[['llama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = bpd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small llama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 [9 rows x 2 columns]
Drop a specific index and column combination from the MultiIndex DataFrame, i.e., drop the index
'cow'and column'small':>>> df.drop(index='cow', columns='small') big llama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 [6 rows x 1 columns]
>>> df.drop(index='length', level=1) big small llama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 [6 rows x 2 columns]
- Parameters:
labels – Index or column labels to drop. A tuple will be used as a single label and not treated as a list-like.
axis – Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
index – Alternative to specifying axis (
labels, axis=0is equivalent toindex=labels).columns – Alternative to specifying axis (
labels, axis=1is equivalent tocolumns=labels).level – For MultiIndex, level from which the labels will be removed.
- Returns:
DataFrame without the removed column labels.
- Return type:
- Raises:
KeyError – If any of the labels is not found in the selected axis.
ValueError – If values for both
labelsandindex/columnsare provided.ValueError – If a multi-index tuple is provided as
level.ValueError – If either
labelsorindex/columnsis not provided.