bigframes.pandas.DataFrame.kurt#
- DataFrame.kurt(*, numeric_only: bool = False)[source]#
Return unbiased kurtosis over columns.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
Examples:
>>> df = bpd.DataFrame({"A": [1, 2, 3, 4, 5], ... "B": [3, 4, 3, 2, 1], ... "C": [2, 2, 3, 2, 2]}) >>> df A B C 0 1 3 2 1 2 4 2 2 3 3 3 3 4 2 2 4 5 1 2 [5 rows x 3 columns]
Calculating the kurtosis value of each column:
>>> df.kurt() A -1.2 B -0.177515 C 5.0 dtype: Float64
- Parameters:
numeric_only (bool, default False) – Include only float, int, boolean columns.
- Returns:
Series.
- Return type: