bigframes.pandas.DataFrame.explode#
- DataFrame.explode(column: Hashable | Sequence[Hashable], *, ignore_index: bool | None = False) DataFrame[source]#
Transform each element of an array to a row, replicating index values.
Examples:
>>> df = bpd.DataFrame({'A': [[0, 1, 2], [], [], [3, 4]], ... 'B': 1, ... 'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]}) >>> df.explode('A') A B C 0 0 1 ['a' 'b' 'c'] 0 1 1 ['a' 'b' 'c'] 0 2 1 ['a' 'b' 'c'] 1 <NA> 1 [] 2 <NA> 1 [] 3 3 1 ['d' 'e'] 3 4 1 ['d' 'e'] [7 rows x 3 columns] >>> df.explode(list('AC')) A B C 0 0 1 a 0 1 1 b 0 2 1 c 1 <NA> 1 <NA> 2 <NA> 1 <NA> 3 3 1 d 3 4 1 e [7 rows x 3 columns]
- Parameters:
column (str, Sequence[str]) – Column(s) to explode. For multiple columns, specify a non-empty list with each element be str or tuple, and all specified columns their list-like data on same row of the frame must have matching length.
ignore_index (bool, default False) – If True, the resulting index will be labeled 0, 1, …, n - 1.
- Returns:
Exploded lists to rows of the subset columns; index will be duplicated for these rows.
- Return type:
- Raises:
If columns of the frame are not unique. * If specified columns to explode is empty list. * If specified columns to explode have not matching count of elements rowwise in the frame.
KeyError – If incorrect column names are provided