bigframes.geopandas.GeoSeries.drop#
- GeoSeries.drop(labels: Any = None, *, axis: int | str = 0, index: Any = None, columns: Hashable | Iterable[Hashable] = None, level: str | int | None = None) Series#
Return Series with specified index labels removed.
Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level.
Examples:
>>> s = bpd.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: Int64
Drop labels B and C:
>>> s.drop(labels=['B', 'C']) A 0 dtype: Int64
Drop 2nd level label in MultiIndex Series:
>>> midx = pd.MultiIndex(levels=[['llama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> s = bpd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s llama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: Float64
>>> s.drop(labels='weight', level=1) llama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: Float64
- Parameters:
labels (single label or list-like) – Index labels to drop.
axis – Unused. Parameter needed for compatibility with DataFrame.
index – Redundant for application on Series, but ‘index’ can be used instead of ‘labels’.
columns – No change is made to the Series; use ‘index’ or ‘labels’ instead.
level – For MultiIndex, level for which the labels will be removed.
- Returns:
Series with specified index labels removed or None if
inplace=True.- Return type:
bigframes.pandas.Series or None
- Raises:
KeyError – If none of the labels are found in the index.